7,828 research outputs found

    Klein paradox for a pn junction in multilayer graphene

    Full text link
    Charge carriers in single and multilayered graphene systems behave as chiral particles due to the particular lattice symmetry of the crystal. We show that the interplay between the meta-material properties of graphene multilayers and the pseudospinorial properties of the charge carriers result in the occurrence of Klein and anti-Klein tunneling for rhombohedral stacked multilayers. We derive an algebraic formula predicting the angles at which these phenomena occur and support this with numerical calculations for systems up to four layers. We present a decomposition of an arbitrarily stacked multilayer into pseudospin doublets that have the same properties as rhombohedral systems with a lower number of layers.Comment: 5 pages, 4 figure

    Hall potentiometer in the ballistic regime

    Full text link
    We demonstrate theoretically how a two-dimensional electron gas can be used to probe local potential profiles using the Hall effect. For small magnetic fields, the Hall resistance is inversely proportional to the average potential profile in the Hall cross and is independent of the shape and the position of this profile in the junction. The bend resistance, on the other hand, is much more sensitive on the exact details of the local potential profile in the cross junction.Comment: 3 pages, 4 ps figure

    Four band tunneling in bilayer graphene

    Full text link
    The conductance, the transmission and the reflection probabilities through rectangular potential barriers and pn-junctions are obtained for bilayer graphene taking into account the four bands of the energy spectrum. We have evaluated the importance of the skew hopping parameters {\gamma}3 and {\gamma}4 to these properties and show that for energies E>{\gamma}1/100 their effect is negligible. For high energies two modes of propagation exist and we investigate scattering between these modes. For perpendicular incidence both propagation modes are decoupled and scattering between them is forbidden. This extends the concept of pseudospin as defined within the two band approximation to a four band model and corresponds to the (anti)symmetry of the wavefunctions under in-plane mirroring. New transmission resonances are found that appear as sharp peaks in the conductance which are absent in the two band approximation. The application of an interlayer bias to the system: 1) breaks the pseudospin structure, 2) opens a bandgap that results in a distinct feature of suppressed transmission in the conductance, and 3) breaks the angular symmetry with respect to normal incidence in the transmission and reflection

    Few-electron eigenstates of concentric double quantum rings

    Full text link
    Few-electron eigenstates confined in coupled concentric double quantum rings are studied by the exact diagonalization technique. We show that the magnetic field suppresses the tunnel coupling between the rings localizing the single-electron states in the internal ring, and the few-electron states in the external ring. The magnetic fields inducing the ground-state angular momentum transitions are determined by the distribution of the electron charge between the rings. The charge redistribution is translated into modifications of the fractional Aharonov-Bohm period. We demonstrate that the electron distribution can be deduced from the cusp pattern of the chemical potentials governing the single-electron charging properties of the system. The evolution of the electron-electron correlations to the high field limit of a classical Wigner molecule is discussed.Comment: to appear in Physical Review

    Paramagnetic adsorbates on graphene: a charge transfer analysis

    Full text link
    We introduce a modified version of the Hirshfeld charge analysis method and demonstrate its accurateness by calculating the charge transfer between the paramagnetic molecule NO2 and graphene. The charge transfer between paramagnetic molecules and a graphene layer as calculated with ab initio methods can crucially depend on the size of the supercell used in the calculation. This has important consequences for adsorption studies involving paramagnetic molecules such as NO2 physisorbed on graphene or on carbon nanotubes.Comment: 4 pages, 4 figures, submitted to Applied Physics Letter

    Violation of Onsager symmetry for a ballistic channel Coulomb coupled to a quantum ring

    Full text link
    We investigate a scattering of electron which is injected individually into an empty ballistic channel containing a cavity that is Coulomb coupled to a quantum ring charged with a single-electron. We solve the time-dependent Schr\"odinger equation for the electron pair with an exact account for the electron-electron correlation. Absorption of energy and angular momentum by the quantum ring is not an even function of the external magnetic field. As a consequence we find that the electron backscattering probability is asymmetric in the magnetic field and thus violates Onsager symmetry.Comment: submitted to EP

    Graphene: a perfect nanoballoon

    Full text link
    We have performed a first-principles density functional theory investigation of the penetration of helium atoms through a graphene monolayer with defects. The relaxation of the graphene layer caused by the incoming helium atoms does not have a strong influence on the height of the energy barriers for penetration. For defective graphene layers, the penetration barriers decrease exponentially with the size of the defects but they are still sufficiently high that very large defects are needed to make the graphene sheet permeable for small atoms and molecules. This makes graphene a very promising material for the construction of nanocages and nanomembranes.Comment: 4 pages, 4 figures, submitted to Applied Physics Letter

    Double quantum dots defined in bilayer graphene

    Full text link
    Artificial molecular states of double quantum dots defined in bilayer graphene are studied with the atomistic tight-binding and its low-energy continuum approximation. We indicate that the extended electron wave functions have opposite parities on each of the sublattices at both graphene layers and that the ground-state wave function components change from bonding to antibonding with the interdot distance. In the weak coupling limit -- the most relevant for the quantum dots defined electrostatically -- the signatures of the interdot coupling include -- for the two-electron ground state -- formation of states with symmetric or antisymmetric spatial wave functions split by the exchange energy. In the high energy part of the spectrum the states with both electrons in the same dot are found with the splitting of energy levels corresponding to simultaneous tunneling of the electron pair from one dot to the other
    corecore